Supercomputers, the world’s largest and fastest computers, are primarily used for complex scientific calculations. The parts of a supercomputer are comparable to those of a desktop computer: they both contain hard drives, memory, and processors (circuits that process instructions within a computer program).

Although both desktop computers and supercomputers are equipped with similar processors, their speed and memory sizes are significantly different. The supercomputer’s large number of processors, enormous disk storage, and substantial memory greatly increase the power and speed of the machine. Although desktop computers can perform millions of floating-point operations per second (megaflops), supercomputers can perform at speeds of billions of operations per second (gigaflops) and trillions of operations per second (teraflops).

Evolution of Supercomputers

Many current desktop computers are actually faster than the first supercomputer, the Cray-1, which was developed by Cray Research in the mid-1970s. The Cray-1 was capable of computing at 167 megaflops by using a form of supercomputing called vector processing consisting of rapid execution of instructions in a pipelined fashion. Contemporary vector processing supercomputers are much faster than the Cray-1, but an ultimately faster method of supercomputing was introduced in the mid-1980s: parallel processing. Applications that use parallel processing are able to solve computational problems by simultaneously using multiple processors. In general, there are two parallel processing approaches symmetric multiprocessing (SMP) and massively parallel processing (MPP).

Applications of Supercomputers

Supercomputers are so powerful that they can provide researchers with insight into phenomena that are too small, too big, too fast, or too slow to observe in laboratories. Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modelling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion)

Top supercomputers of recent years

As of June 2016, the fastest supercomputer in the world was the Sunway TaihuLight, in the city of Wixu in China. A few statistics on TaihuLight:

  • 40,960 64-bit, RISC processors with 260 cores each.
  • Peak performance of 125 petaflops (quadrillion floating point operations per second).
  • 32GB DDR3 memory per compute node, 1.3 PB memory in total.
  • Linux-based Sunway Raise operating system (OS).


Year Supercomputer Peak speed
2016 Sunway TaihuLight 93.01 PFLOPS Wuxi, China
2013 NUDT Tianhe-2 33.86 PFLOPS Guangzhou, China
2012 Cray Titan 17.59 PFLOPS Oak Ridge, U.S.
2012 IBM Sequoia 17.17 PFLOPS Livermore, U.S.
2011 Fujitsu K computer 10.51 PFLOPS Kobe, Japan
2010 Tianhe-IA 2.566 PFLOPS Tianjin, China
2009 Cray Jaguar 1.759 PFLOPS Oak Ridge, U.S.

11 Replies to “Supercomputers”

Leave a Reply to Ben Cancel reply

Your email address will not be published. Required fields are marked *